
Timely detection of an inhalational anthrax outbreak is
critical for clinical and public health management.
Syndromic surveillance has received considerable invest-
ment, but little is known about how it will perform relative to
routine clinical case finding for detection of an inhalational
anthrax outbreak. We conducted a simulation study to com-
pare clinical case finding with syndromic surveillance for
detection of an outbreak of inhalational anthrax. After sim-
ulated release of 1 kg of anthrax spores, the proportion of
outbreaks detected first by syndromic surveillance was
0.59 at a specificity of 0.9 and 0.28 at a specificity of 0.975.
The mean detection benefit of syndromic surveillance was
1.0 day at a specificity of 0.9 and 0.32 days at a specificity
of 0.975. When syndromic surveillance was sufficiently
sensitive to detect a substantial proportion of outbreaks
before clinical case finding, it generated frequent false
alarms.

In the early stage of an inhalational anthrax outbreak, a 1-
day delay in the initiation of chemoprophylaxis and

treatment of exposed persons can result in thousands of
additional deaths and millions of dollars of additional
expenditures (1,2). Thus, timely detection of an inhalation-
al anthrax outbreak is critical. Rapid detection is also
important for disease outbreaks that result from other
bioterrorism agents and from emerging infectious diseases,
such as severe acute respiratory syndrome or avian
influenza (3).

To detect an epidemic such as inhalational anthrax,
which is nonendemic and results in severe symptoms, pub-
lic health authorities have relied traditionally on identifica-
tion and rapid reporting of the sentinel clinical case.
However, because the perceived likelihood of a bioterror-
ism attack has increased, public health authorities have

sought novel approaches for rapid outbreak detection. One
approach that has received considerable economic invest-
ment over the past 5 years is syndromic surveillance. This
approach follows prediagnostic data sources in an attempt
to detect an increase in the prevalence of nonspecific
symptoms. For example, the BioSense system (4), devel-
oped by the Centers for Disease Control and Prevention
(CDC) at a cost of >$75 million (5), follows records of
outpatient visits, pharmaceutical prescriptions, and labora-
tory orders in an attempt to detect disease outbreaks rapid-
ly. Hundreds of similar systems are maintained or are
under development by various groups around the world
(6). Other examples include systems operated by the
Department of Homeland Security (5) and academic cen-
ters in partnership with state or county public health
departments (7–9).

In addition to supporting outbreak detection, these syn-
dromic surveillance systems provide situational awareness
for public health authorities and may serve other purposes.
Nevertheless, a major justification for these systems is out-
break detection. Despite substantial investment in syn-
dromic surveillance and calls for further research from
groups such as the Institute of Medicine (3), little evidence
exists to suggest how syndromic surveillance will perform
relative to clinical case finding for detection of an inhala-
tional anthrax outbreak (10). The reason for this lack of
evidence is that data from real outbreaks are not available
to evaluate the performance of syndromic surveillance
alone or in comparison to clinical case finding. Moreover,
even if data were available from a large-scale outbreak,
those data would allow only an evaluation of performance
in 1 specific setting. CDC recently endorsed the use of
simulated outbreaks to address the dearth of outbreak data
(11), but existing simulation studies have not compared
detection through clinical case finding with syndromic sur-
veillance (12–14). Our aim was to develop a model for
simulating use of healthcare services after a large-scale
exposure to aerosol anthrax spores and then to use this
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model to estimate the detection benefit of syndromic sur-
veillance compared with clinical case finding.

Methods

Study Design
We developed a model to simulate the dispersion of

released anthrax spores; the infection of exposed persons;
the progression of disease in infected persons; and symp-
tomatic persons’ use of the healthcare system, including
blood culture testing in clinical settings. Using the simula-
tion model, we generated outbreak signals and time until
the first clinical diagnosis for 3 amounts of spores
released. To incorporate into the model the uncertainty in
parameter values, we used a Latin hypercube sampling
design, which allows many parameter values to vary
simultaneously (15). The 3,000 simulated signals generat-
ed with this sampling strategy were superimposed in turn
onto baseline administrative records of ambulatory health-
care visits in the Norfolk, Virginia, area. These records are
generated daily and similar types of records are used wide-
ly for syndromic surveillance (4,7,9). We assessed the use-
fulness of syndromic surveillance by modeling the
healthcare system use that would occur after an anthrax
attack and superimposing this use onto actual administra-
tive data over 1-year period. Finally, we assessed, over a
range of specificity, the sensitivity and timeliness of syn-
dromic surveillance and the detection benefit of syndromic
surveillance compared with clinical case finding for each
simulated outbreak. We summarize our methods in the
remainder of this section and refer readers to the online
Technical Appendix (available from http://www.cdc.gov/
ncidod/EID/vol12no12/06-0331_app.htm) for additional
details.

Simulation Model
The simulation model builds on our previous work

(16–18) and is composed of 4 components: dispersion,
infection, disease, and healthcare system use. The disper-
sion model simulates the number of anthrax spores a per-
son would inhale at locations throughout the region after
release of aerosolized spores. We used the Hazard
Prediction and Assessment Capability (HPAC) software
developed by the Defense Threat Reduction Agency to
simulate the dispersion of spores (19). The HPAC model
accounts for factors such as atmospheric conditions and
terrain. We simulated a point release of 3 amounts of
anthrax spores: 1 kg, 0.1 kg, and 0.01 kg (Figure 1A).

The infection model simulates the number of persons
infected, according to residential address and dispersion of
spores (Figure 1B). The probability of infection given expo-
sure to an amount of spores was modeled by using a probit
regression model. The disease model uses a semi-Markov
process to simulate the progression of infected persons
through 3 discrete states of disease. Each infected person
began in the incubation state and then progressed through
the prodromal state and the fulminant state. The time in
each state was sampled from a log normal distribution.

The healthcare use model uses a semi-Markov process
to simulate the probability and timing of a symptomatic
person seeking care and submission of blood for culture
and culture results when care is sought. For persons in the
prodromal or fulminant state of disease who sought care,
the instantaneous probability of seeking care increased lin-
early over the duration of the state. For patients whose
blood samples were cultured, the testing process was mod-
eled as the transition through 2 discrete states: growth and
isolation. The time spent in each of these states was mod-
eled by using an exponential distribution.
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Figure 1. Maps showing output from dispersion (A) and infection (B) components of the simulation model. The dispersion component
simulates geographic distribution of anthrax spores after an aerosol release. The infection component simulates infection of persons
exposed to spores. 



Data for Simulation Model
The infection model used an infection function corre-

sponding to the data reported by Glassman (20). This is a
probit model with a 50% lethal dose (LD50) of 8,600 spores
and a slope of 0.67. Uncertainty exists about the values for
many of the parameters in the disease and healthcare use
models. To incorporate this uncertainty into our estimates,
we used a Latin hypercube sampling approach to sample
parameter values for random variables in our simulation
model (15). This approach requires specifying equal prob-
ability bins for parameter values. We specified 3 bins for
each parameter value, a narrow bin around the most likely
estimate, and wider bins on either side of the estimate.
Table 1 shows the bins we used for each parameter value,
the probability distribution that each value parameterizes,
and the sources that we used to define the bins.

We used previous work modeling anthrax for the distri-
bution of time periods in each disease state (2,21,22). For
the probability of seeking care while in the prodromal dis-
ease state, cross-sectional surveys indicate that 14%–30%
of persons visit a physician at some point during an
episode of upper respiratory tract illness (23,24). For the
fulminant disease state, we estimated the probability of
seeking care before death as 90%–95%, given the severity
of the symptoms in that state.

After a person made a healthcare visit, we simulated the
syndrome assigned to the person by using probabilities that
reflect the distribution of clinical presentations for inhala-
tional anthrax reported in the literature (25,26). Because
we considered only respiratory syndromes for surveil-
lance, we varied directly only the probability of being
assigned a respiratory syndrome to persons in the prodro-
mal disease state.

For visits from persons in either symptomatic disease
state, the estimate of sensitivity from published studies of
blood culture testing was 0.8–0.9 (27). For a visit in the
prodromal state, we estimated the probability of a physi-
cian ordering a blood culture as 0.01–0.015 on the basis of
data from the National Ambulatory Medical Care Survey
(28). For a visit in the fulminant state of disease, we esti-
mated the probability of a blood culture test as 0.9–0.95.
After gram-positive rods grew in the blood culture, we
estimated the probability of isolating the organism to be
0.8–0.9 (29). We modeled the time until growth and isola-
tion as exponential (25,30).

Baseline Data and Release Scenarios
We used records of ambulatory visits in the Norfolk,

Virginia, region acquired from the TRICARE health main-
tenance organization as a baseline onto which we superim-
posed simulated outbreak records. The data covered the
period 2001–2003, and the simulation region included 17
clinical facilities within an ≈160-km × 200-km area that
encompasses 158 ZIP codes from 2 states. Over the 3 years
of available data, 427,634 persons made >5 million visits.
We classified the records into syndromes by using the
International Classification of Diseases, 9th Revision,
Clinical Modification (ICD-9-CM) to syndrome mapping
defined by the ESSENCE system (7) and used only
351,749 records for which persons were classified as hav-
ing a respiratory syndrome. The Human Subjects Panel at
the Stanford School of Medicine approved the use of these
data for this study. We examined 3 scenarios defined by the
amount of spores released: 1 kg, 0.1 kg, and 0.01 kg. For
each scenario, we performed 1,000 simulations.
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Outbreak Detection
The time to outbreak detection through clinical case

finding for a simulated outbreak was calculated for each
simulated outbreak as the time between exposure to spores
and the first positive blood culture. To calculate time to
outbreak detection through syndromic surveillance, we
superimposed the simulated records for respiratory syn-
drome visits onto the authentic baseline data, beginning on
a randomly selected date in 2003, and then applied the out-
break detection algorithm to the combined baseline and
simulated data. The outbreak detection algorithm used a
time-series model (31) to generate daily 1-step-ahead fore-
casts for the total number of respiratory syndrome visits
(13) and then applied a cumulative sum (32) to the forecast
residual. To vary the specificity of the detection algorithm,
we varied the decision threshold of the cumulative sum.

Evaluation Metrics
To evaluate outbreak detection through syndromic sur-

veillance, we calculated sensitivity, specificity, and timeli-
ness at a range of decision thresholds. Timeliness is the
duration between the release of anthrax spores and the first
report of an outbreak. We also computed the detection ben-
efit of syndromic surveillance relative to clinical case find-
ing, and the proportion of runs with a detection benefit >0.
Detection benefit is the potential time saved in detection
from using syndromic surveillance compared with clinical
case finding. The benefit is calculated as the difference in
the timeliness between syndromic surveillance and clinical
case finding in those simulations in which detection
occurred first by syndromic surveillance. When an out-
break was not detected by syndromic surveillance, the
detection benefit was 0. For a given release scenario, each
of the 1,000 simulations integrated both randomness in the
component model outputs as well as uncertainty in compo-
nent model parameters. Each of the 1,000 simulations is a
sample from the integrated distribution of possible out-
comes. To indicate the spread of the integrated uncertainty
distribution, we calculated the upper and lower deciles
from the 1,000 simulations. For plots, we calculated 95%
confidence intervals, which reflect finiteness of the simu-
lation.

Results

Detection Performance of Clinical Case Finding
Because all outbreaks were ultimately detected by clin-

ical case finding through routine blood culture, the sensi-
tivity of this approach was 1.0 for the scenarios
considered. Clinical case finding detected outbreaks from
an average of 3.7 days to 4.1 days after release, with larg-
er amounts of spores detected before smaller amounts
(Table 2). Results from analyses of additional release sce-

narios (data not shown) suggested that the influence of
amount released on time to detection was mediated, in
part, through the number infected. Mean timeliness across
the scenarios examined was associated with the mean
number infected (Pearson’s r −0.94, 95% confidence
interval −0.98 to −0.79), and an increase of 10,000 infect-
ed persons resulted in a decrease in the time until detection
of ≈4 hours.

Detection Performance of Syndromic Surveillance
The sensitivity and timeliness of syndromic surveil-

lance were influenced by the release amount and by speci-
ficity. Table 3 shows this relationship over the release
scenarios examined and 2 levels of specificity. At a speci-
ficity of 0.90, a 1-kg release was detected in 100% of our
simulations (sensitivity 1.0) at a mean detection time of
3.1 days. For a release that was much smaller, 0.01 kg, sen-
sitivity was 0.94, and the mean detection time increased to
3.6 days. Although the sensitivity of syndromic surveil-
lance was high when we set specificity to 0.90, this speci-
ficity resulted in a false alarm (false-positive detection) ≈1
every 10 days. By increasing specificity to 0.975, we
reduced the false alarm rate to ≈1 every 40 days (Table 3).
However, with increased specificity, the sensitivity of syn-
dromic surveillance decreased (from 0.98 to 0.82 depend-
ing on the size of the release) and the mean time until
detection lengthened to 4.3 days for a 1-kg release and to
5.1 days for a 0.01-kg release (Table 3).

Results from analyses of additional release scenarios
(data not shown) indicated that the trends in sensitivity and
timeliness across release amount were mediated to some
extent by the number infected. Sensitivity was a nonlinear
function of the number of persons infected, with sensitivi-
ty increasing more quickly when fewer persons were
infected. At a specificity of 0.975, an increase of 10,000
infected persons resulted in a decrease in time to detection
of ≈6 hours.

Detection Benefit of Syndromic Surveillance
Compared with Clinical Case Finding

The detection benefit of syndromic surveillance com-
pared with clinical case finding was influenced by speci-
ficity and the release amount. Table 3 shows this
relationship for the release amounts examined and 2 levels
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of specificity. When the specificity was 0.9, syndromic
surveillance detected from 51% to 59% of outbreaks
before clinical case finding, and the mean detection bene-
fit was 1.0–1.1 days, but this specificity resulted in a false
alarm every 10 days. At a specificity of 0.975, which
reduced false alarms to 1 every 40 days, syndromic sur-
veillance detected 19%–28% of outbreaks before clinical
case finding and the mean detection benefit was 0.32–0.33
days, or ≈8 hours. Figure 2 shows that for the 0.01-kg and
1-kg release scenarios (results for the 0.1-kg release are
similar, but are not shown), the proportion of outbreaks
detected first by syndromic surveillance and the mean
detection benefit of surveillance each increased as speci-
ficity decreased. Figure 2 also shows that the release
amount had a strong effect on the proportion of outbreaks
detected first by syndromic surveillance but that it did not
have a strong effect on the mean detection benefit.

At a set specificity, syndromic surveillance tended to
detect a higher proportion of outbreaks before clinical case
finding with increasing release amount. The mean detec-
tion benefit, in contrast, tended to decrease when the
amount of spores released increased. This decrease in
average detection benefit occurred because even though
syndromic surveillance detected more outbreaks before
clinical case finding as the release amount increased, the
detection benefit for the additional outbreaks was small,
and the average detection benefit thus decreased.

Discussion
When we compared the performance of clinical case

finding with that of syndromic surveillance for detecting
an inhalational anthrax outbreak, we found that clinical
case finding detected outbreaks on average 3.7–4.6 days
after release of spores. The ability of syndromic surveil-
lance to detect an outbreak before clinical case finding was
influenced by both specificity and release size, with speci-
ficity being the predominant factor. Our results suggest
that syndromic surveillance could detect an inhalational
anthrax outbreak before clinical case finding. However, we
regularly observed a detection benefit only when syn-
dromic surveillance operated at a specificity in the range of
0.9, which corresponds to 1 false alarm every 10 days.
When operating at this relatively low specificity with a

concomitant high sensitivity, syndromic surveillance
detected outbreaks, on average, 1 day before clinical case
finding did.

One of the most useful findings of our study was the
tradeoff between sensitivity and specificity of syndromic
surveillance. To reduce the false alarm rate, specificity
must be high. However, as specificity increased in our
study, the sensitivity of syndromic surveillance decreased,
and the proportion of outbreaks that was detected first by
syndromic surveillance decreased more substantially. If
the response to a result from syndromic surveillance is
resource intensive and includes follow-up investigations in
multiple healthcare settings, then a false alarm rate of 1
every 10 days may be too high for such a system to be use-
ful. Alternatively, if public health personnel can rule out
false-positive results with minimal investment, then a
higher rate of false alarms may be acceptable.

The detection benefit of syndromic surveillance might
be an important lead, depending on the action triggered by
a surveillance alarm. Because many clinical and public
health departments have defined protocols for actions after
clinical confirmation of an inhalational anthrax case (33),
the action after detection of a clinical case is fairly well
defined in many jurisdictions. In contrast, the appropriate
action after a result from syndromic surveillance system is
not well-defined (34). For example, some public health
departments routinely wait 1 day for a second alarm before
taking action (35). This strategy could eliminate the poten-
tial detection benefit of syndromic surveillance. Another
concern is the relatively low specificity at which syn-
dromic surveillance must operate to consistently result in a
detection benefit. A system producing this many false
alarms may result in excessive costs, and users may mini-
mize the importance of these results.

To be useful, however, syndromic surveillance does not
necessarily have to detect all outbreaks, or even most out-
breaks, before a clinician detects the first case. The addi-
tional lead in detection offered by syndromic surveillance
in some outbreaks may result in enough benefit to support
the use of syndromic surveillance. Syndromic surveillance
may also be useful for applications other than detecting an
outbreak caused by bioterrorism; e.g., for detecting other
types of disease outbreaks (36), for ruling out the existence
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of an outbreak, or for evaluating the effect of a public
health intervention. Assessment of the question of the util-
ity of syndromic surveillance in general would require
consideration of a broader range of costs and benefits than
we included in our study.

Our methods are an advance over those used in previ-
ous studies because we were able to examine rigorously,
within a single modeling framework, the ability of clinical
case finding and syndromic surveillance to detect anthrax
outbreaks. The nature of our model allowed us to vary
some outbreak characteristics directly (e.g., release
amount) and to incorporate the uncertainty in parameter
values into our final estimates of detection performance
and detection benefit. Although our sampling approach did
allow us to vary many parameter values simultaneously, it
did not clarify how the results vary in relation to changes
in the value of a single parameter. Our estimate of detec-
tion performance through syndromic surveillance is com-
parable to estimates observed through studies that used
simulation models (12,37), but those studies did not allow
direct comparison of detection through syndromic surveil-
lance with detection through clinical case finding. Our
estimate of the time until detection through clinical case
finding is longer than the estimate used by the authors of a
study aimed at modeling response strategies to an anthrax
outbreak (2), but those authors did not provide a clear
rationale for the value they chose. An initial presumptive
diagnosis may occur earlier than the first positive blood
culture result (e.g., through clinical symptoms and chest

radiographs), but a decision for large-scale intervention
would likely not be made until at least after the first defin-
itive diagnosis was made.

In our study, we considered 1 approach to syndromic
surveillance for an outbreak resulting from 1 type of
organism, and we considered clinical case finding through
1 type of routinely applied diagnostic test. There are many
different approaches to syndromic surveillance; e.g., dif-
ferent types of data and different detection algorithms.
Although different approaches to surveillance might pro-
duce different results, the choice of the infectious organism
is likely to have a greater effect on results. Anthrax is rel-
atively unique among bioterrorism agents in that a routine-
ly used diagnostic test (i.e., blood culture) will identify the
organism definitively. The benefit of syndromic surveil-
lance relative to clinical case finding may therefore be
greater for outbreaks caused by other organisms, and an
anthrax outbreak may be a worst-case scenario for syn-
dromic surveillance.

Syndromic surveillance detected an inhalation anthrax
outbreak before the first clinical case was diagnosed in as
many as half of simulated outbreaks. However, the poten-
tial detection benefit of syndromic surveillance compared
with clinical case finding depended critically on the speci-
ficity and sensitivity at which a surveillance system oper-
ated and on the size of the outbreak. When syndromic
surveillance was sufficiently sensitive to detect a substan-
tial proportion of outbreaks, it generated frequent false
alarms. Public health authorities should be aware that the
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Figure 2. Proportion of inhalational anthrax outbreaks detected by  syndromic surveillance before clinical case finding (A) and mean
detection benefit of syndromic surveillance compared with clinical case finding as a function of specificity (and false-alarm rate)(B)  for 3
release scenarios. CI, confidence interval.

A B



potential detection benefit of syndromic surveillance com-
pared with clinical case finding is influenced strongly by
the specificity at which a surveillance system operates. To
help detect outbreaks more rapidly, future research should
examine the cost-effectiveness of syndromic surveillance
and explore approaches to linking syndromic surveillance
and clinical case finding more closely.
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Technical Appendix

In this document we provide additional information about the methods used
in the simulation study that we describe in the main paper. In section 1 we
describe the simulation model and in section 2 we describe the study design.

1 Simulation Model

The simulation model used in this study builds on our earlier work [5–7].

1.1 Dispersion

The dispersion model takes as input the amount of anthrax spores released and
returns as output the number of spores an individual would inhale at locations
on a regular grid overlaid upon the study region. To model the dispersion
of anthrax spores, we used the Hazard Prediction and Assessment Capability
(HPAC) software, which is developed by the US Defence Threat Reduction
Agency (DTRA) to allow modeling of threats from weapons of mass destruction
[8]. This software uses meteorological and terrain data to interpolate time-
integrated exposure concentrations from a release scenario onto a spatial grid,
relying on the second-order cluster integrated puff model [24].

The HPAC software outputs a mean exposure plume for a release scenario.
The mean plume is determined within HPAC by simulating many individual
plumes and then calculating the mean and standard deviation of exposure at
each location on an exposure grid. We did not use the mean plume directly
because it smooths out the variation in spore concentration within a plume
and because the mean plume tends to overestimate exposure at the margins
of the plume. To address these limitations of the mean plume, we re-sampled
randomly from the mean plume.

The release scenario we used for all release amounts was a stationary release
in the area of the Langley Air Force Base (37.1N, 76.4W), using weather data
for Veteran’s Day (November 11, 5 am EST, 2 m s−1 NNW wind, clear skies),
with a 2 m release height, and a 10 s duration. The HPAC software was set
to calculate a boundary layer and large-scale variability, and to include terrain
effects. We assumed that 1 kg of spores contained 1015 spores and we modeled
the dispersion of 1 kg, 0.1 kg, and 0.01 kg of spores. We calculated a mean
plume at each release amount and then re-sampled 1,000 random plumes from
each mean plume. The HPAC model provides the time-integrated concentration
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at each location and we assumed that individuals breathed at a rate of 0.0005
m3s−1 to determine the number of spores an individual would inhale at locations
throughout the study region.

1.2 Infection

The infection model takes as input the number of spores an individual would
inhale at locations on a regular grid (output from the dispersion model) and the
population by ZIP code. The model returns the number of infected individuals
by residential ZIP code. We assumed that all individuals were exposed at their
home address and that each individual had a uniform probability of being ex-
posed at any location within their home ZIP code. To determine the probability
of infection following exposure to a given number of spores, we used a function
corresponding to the data reported by Glassman following experimental expo-
sure of primates [10]. This is a probit model with an LD50 of 8,600 spores and
a slope of 0.67. Figure 1 shows a plot of the infection function. This function
allows for infection at low dose exposure. For example, approximately 2.5% of
individuals exposed to 10 spores will become infected.

To determine the number infected by home ZIP code, we first determined
the probability of infection for each ZIP code Zi as the average probability of
infection across the ZIP code:

pZi =
1
ni

ni∑

j=1

f(cj),

where there are ni cells from the exposure grid within ZIP code Zi and
f(cj) is the infection function that returns the probability of infection given the
number of spores inhaled in cell cj . The number of individual infected within a
ZIP code IZi was then sampled from a binomial distribution:

IZi ∼ binomial(NZi , pZi),

where NZi is the population of ZIP code Zi.

1.3 Disease

The disease model takes as input the number of infected individuals and returns
a disease path for each individual. The disease path describes the amount of time
spent in each discrete disease state. We used a semi-Markov process to model
progression of an individual with inhalational anthrax through three disease
states: incubation, prodromal, and fulminant (Figure 2) [26].

The definition of the semi-Markov process requires identification of the states,
including the holding-time functions, and specification of the transition proba-
bilities between states. The initial state in the model was incubation, followed
by certain transition to the prodromal state, and then the fulminant state. For
holding-time functions, we used the lognormal distribution, which appears to de-
scribe the duration of incubation for many diseases [20, 23], including inhalation
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Figure 1: The infection function for inhaled anthrax determined mainly from primate

research [10].
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Figure 2: The disease model for inhalational anthrax. Infected individuals all pass

through three disease states. In the incubation state individuals have no symptoms.

In the prodromal state individuals experience an influenza-like illness. Finally, in the

fulminant state individuals experience severe symptoms, such as shock. The holding-

time function in each state is a lognormal distribution with parameters shown in Table

1.
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No VisitNo Visit VisitVisit IsolationGrowthGrowth
αs βs γ

Figure 3: The health-care utilization model. When individuals enter the prodromal or

fulminant disease state, they enter the health-care utilization model. The probability

of making a visit (αs) varies by disease state (Table 1). The probability of a positive

blood culture (βs) is the product of the probability of ordering a test (which varies by

disease state) and the sensitivity of the test (which does not vary by disease state).

The probability of isolating the organism does not vary by disease state. The holding-

time function for the ‘No Visit’ state is triangular, with a duration equivalent to the

length of the disease state. Holding-time functions for the ‘Visit’ and ‘Growth’ states

are exponential, with parameters shown in Table 1.

anthrax [4, 17]. The values used to parameterize the holding-time functions are
taken from observational studies of human exposure [4, 17] and other modeling
studies [25, 26], and are shown in Table 1.

1.4 Health-Care Utilization

The health-care utilization model takes as input a set of disease paths and for
each path performs three tasks: (1) it identifies if and when individuals seek care
in each disease state, (2) it determines the presenting syndrome for individuals
that seek care, and (3) it identifies the timing and results of blood culture testing
once care is sought.

We used a semi-Markov process to model health-care utilization (Figure
3). A separate process was used to describe health-care utilization in each
of the prodromal and fulminant disease states. Both processes had the same
states and transitions (Figure 3), but some values for holding-time functions
and transition probabilities differed between the disease states (i.e., those states
with a s subscript in Figure 3) and the values used in the simulation study are
shown in Table 1.

The transition from ‘No Visit’ to ‘Visit’ represents an individual seeking
care at an ambulatory clinic or emergency department. The probability of
this transition occurring (αs) differs between disease states (s). We set the
probability of a visit in the prodromal disease state (αp), to approximately 0.30
because cross-sectional surveys suggest that this proportion of individuals visit
a physician at some point during an episode of upper respiratory tract illness
[15, 18]. For the fulminant disease state (αf ), we estimated the probability of
seeking care as approximately 95% given the severity of the symptoms in that
state.

The transition from ‘Visit’ to ‘Growth’ represents an individual having a
positive blood culture test after making a visit. The probability of this transition
(βs) is the product of the probability of performing a blood culture test (β1

s ) and
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the sensitivity of the test (β2, i.e., βs = β1
s×β2). The probability of performing a

test in the prodromal state (β1
p), was estimated from the National Ambulatory

Health Care Survey as approximately 0.0125 [9]. In the fulminant state, we
assumed that the probability of a blood culture test (β1

f ) was approximately
0.95. We relied on published studies of blood-culture testing to estimate the
sensitivity of blood-culture testing in both symptomatic disease states (β2) as
approximately 0.85 [21].

The final transition, from ‘Growth’ to ‘Isolation’, represents the decision to
isolate the organism from a blood culture bottle growing gram-positive rods. We
relied on data from a recent survey to estimate this value (γ) as approximately
0.9 [2].

In addition to a transition probability, each of the first three states in the
health-care utilization model also requires a holding-time function. The holding-
time function for the ‘No Visit’ state models the distribution of time to seeking
care, given that care is sought. We used a right triangular distribution fit
to the time spent in the disease state. So, for example, if an individual had a
prodromal disease state duration of 10 days, then the probability of seeking care
at the instant of entering the disease state would be zero, and the instantaneous
probability of seeking care would increase linearly to 0.2 at ten days, with a mean
time to seeking care of 6.7 days.1 This approach to modeling visits effectively
limits individuals to a single visit in each disease state. The selection of a
triangular distribution reflects the lack of published evidence about the timing
of health-care utilization following the onset of symptoms.

The holding time function for ‘Visit’ reflects the distribution of times until
growth occurs given that the test is positive. The holding time function for
‘Growth’ is the distribution of times until the organism is isolated given than a
decision is made to isolate a specific organism. We modeled both these holding
times as exponential with means obtained from published reviews of blood-
culture testing [1, 11].

Finally, for individuals that made a health care visit, we simulated the syn-
drome assigned to the individual using probabilities that reflect the distribu-
tion of clinical presentations for inhalational anthrax reported in the literature
[11, 12]. As we consider only respiratory syndromes for surveillance, we modeled
only the probability of being assigned a respiratory syndrome in the prodromal
disease state, which we estimated at approximately 0.75 (Table 1).

2 Study Design

2.1 Generation of Simulated Signals

We generated 1,000 simulated outbreak signals at each release amount for a total
of 3,000 signals. To generate the simulated outbreaks for each release amount,

1These values result from the properties of the triangular distribution, which is defined by
three parameters: a, b, and c. In a right triangular distribution, b = c. The maximum point
density is 2 / (b - a) and the mean is (a + b + c) / 3.
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we first sampled an exposure grid and calculated the number infected by home
ZIP code. The next step was to select a set of disease and health-care utilization
parameters. We then generated a disease path for each infected individual, the
timing of visits to physicians for symptomatic individuals, the administrative
codes generated through visits, and the occurrence, timing and results of blood
culture testing.

Due to the large number of parameter values in the disease and health-
care utilization components of the simulation model, we used Latin hypercube
sampling (LHS) to select parameter values for each simulation run of these
components. LHS is an approach to sampling parameter values from a high-
dimensional parameter space in order to obtain estimates of output variables
that are more efficient and precise than would be obtained with simple random
sampling [16]. When specifying a simulation model there are K parameters.
A given run of the simulation model requires a value for each parameter, or
a set of parameter values X = {X1, . . . , XK}. Each parameter has a space
of possible values S = {S1, . . . , SK}. In LHS the space for each parameter is
partitioned into N intervals of probability size 1/N . The Cartesian product of
these intervals partitions S into NK cells, which form a hypercube. To obtain X
for a simulation run requires randomly sampling a partition for each parameter,
and then sampling a parameter value from within that partition, assuming that
values are uniformly distributed within a partition. Table 1 shows the parameter
value intervals used in the simulation study.

In order to reduce the variance between scenarios, we used the same 1,000
sets of disease and health-care utilization parameters, selected through LHS, for
each scenario. In other words, the first runs for each of the 3 release amounts all
used the first set of sampled parameters, the second runs all used the second set
of sampled parameters, and so on. Similarly, we sampled 1,000 exposure grids
and all 3 scenarios used the same 1,000 re-sample exposure plumes.2 Finally,
the same random number generator with the same seed value was used for
each scenario. We used a combined multiple recursive generator as proposed
and implemented by L’Ecuyer with the default initial seed [14]. This sampling
strategy was intended to improve the efficiency of the simulation and reduce the
variance of the output variables [13]. The net result is to facilitate comparison
of the results across the different scenarios.

2.2 Combination of Simulated Data with Baseline Data

We first defined a 330 day interval on the baseline data from January 19, 2003
until December 15, 2003 as possible starting dates for a simulated outbreak.
The gap at the beginning of the year was to allow a period for the detection
algorithm to initialize using test data, and the gap at the end of the year was
to ensure that injected outbreaks did not run off the end of the test data. We
then selected 1,000 random dates for injecting outbreaks. Each of the 330 dates

2The pattern of dispersion is constant and the number of spores scales linearly with amount
release. We therefore simulated a 1 kg release and scaled the results for the two other release
amounts.
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was used 3 times and ten dates were sampled randomly from the 330 dates to
be used a fourth time. All 100 dates were then shuffled randomly.

To inject the simulated outbreak signals for a release amount, we used the
following method. Each release amount had set of simulated outbreaks, O =
{O1, . . . , O1000}, and the set of randomly ordered dates, D = {D1, . . . , D1000}.
For outbreak j, j ∈ {1, . . . , 1000}, we selected Oj and Dj . The outbreak Oj is
a time series of counts, lasting n days and representing the visits for respira-
tory conditions from the day of the simulated release until the day of the peak
incidence of cases.

The outbreaks series Oj is an ordered set of values, Oj = {o(1), . . . , o(n)},
which we define to run from Dj until Dj + n − 1, or Oj = {o(Dj), . . . , o(Dj +
n − 1)}. The background time series is also an ordered set of values, B =
{b(1), . . . , b(m)}. For inject j, we extract a subset of the background time series
Bj = {b(Dj−g), . . . , b(Dj), . . . , b(Dj +n−1)}, where g is the length of the lead-
in gap, which is the amount of time in the inject series before the beginning of
the outbreak. We then define the inject series Ij = {i(Dj−g), . . . , i(Dj +n−1)},
with the entries in the series defined as,

i(k) =
{

b(k) + o(k) if k ≥ Dj and k < Dj + n
b(k) otherwise

In other words, the inject series is formed by adding the values of the out-
break series to the values of the background series, after aligning the two series
so that the first day of the outbreak series is added to day Dj in the background
series. We then applied the outbreak detection algorithm to each day in the in-
ject series to generate alarm values from day Dj − g to day Dj + n − 1. The
lead-in gap g = 16 + (3× 28) = 100 days, and the first 16 values were excluded
from the alarm series as they were required to initialize the temporal forecast
algorithm.3 This left an 84 day (approximately 3 months) initilization period.

2.3 Outbreak Detection Algorithm

We used an autoregressive seasonal integrated moving average (SARIMA) model
[3] to calculate one-step-ahead daily forecasts of respiratory syndrome counts
and then used a cumulative sum [19] to detect positive deviations in the forecast
residuals. Other researchers have used a similar approach to outbreak detection
in a surveillance setting [27].

To fit the SARIMA model, we used two years of data for respiratory syn-
drome visit counts (2001 to 2002, inclusive) and followed a procedure similar
to that described elsewhere [22]. This entailed subtracting the overall mean,
day-of-week means, month means, and holiday means from the original count
data to give a series centered on zero. We used trimmed means (alpha = 0.1)
for both day-of-week and month to minimize the influence of outliers. We then
assessed the temporal autocorrelation in this series and fit a SARIMA model
using a standard approach to model specification [3].

3The number of days excluded is determined by the number and order or terms in the
time-series model
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We evaluated the fit of the SARIMA model to the training (2001 to 2002)
and test data (2003) using the mean absolute percentage error (MAPE), defined
as

MAPE =
1
j

m∑

j=1

|µj − xj |
xj

,

where there are m days in the training interval, µj is the forecast value on
day j and xj is the observed value. After subtracting the overall mean and
means for day-of-week, month and holiday, the zero-centered series exhibited
temporal autocorrelation at short lags on the order of days, and cyclical lags of
order seven. We found that a SARIMA model (2,0,1) x (2,0,1)7 had the best fit
to the zero-centered series. One-step-ahead forecasts from the SARIMA model
resulted in a mean absolute percentage (MAPE) of 14.9% on the training data,
which implies that the forecast values were, on average, within 14.9% of the
true value. This fit is similar to or better than the fit reported by others using
the same algorithm and similar data [22].

To detect temporal aberrancies in the observed counts, we applied a cu-
mulative sum to the standardized forecast residual and declared an aberrancy
when the cumulative sum exceeded a threshold. We calculated the standard-
ized residual for each day as the observed total respiratory visit count minus
the one-step-ahead forecast from the SARIMA model, divided by the standard
error of the forecast. Standardization, or dividing the residual by the standard
error of the forecast, resulted in residuals with a standard normal distribution.

We then applied a one-sided cumulative sum to the standardized residuals
to detect a positive shift in the mean of the residual series:

St = max(0, St−1 + ((Xt − (µ0 + kσx))/σx)).

The cumulative sum requires four parameters: the series mean µ0, the series
standard deviation σx, the shift k, and the decision threshold h. The shift
specifies, in standard deviations, the minimum detectable change in the mean.
We set the shift at 0.5 standard deviations and declared an aberrancy for a
given day, j, when the cumulative sum crossed the decision threshold, or

A(h)j =
{

1 if Sj > h
0 otherwise.

We varied h between 0 and 10 to determine the outbreak detection perfor-
mance over a range of thresholds.

2.4 Evaluation of Outbreak Detection Performance

2.4.1 Sensitivity

Sensitivity is the probability of an alarm given an outbreak, or

Sensitivity = P (A|O) =
n(A,O)
n(O)

,
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where n(O) is the number of outbreaks and n(A,O) is the number of outbreaks
during which at least one alarm sounded. We calculated sensitivity for detecting
an outbreak following a given release amount at a decision threshold h as:

Se(h) =
1
n

n∑

i=1

min(1,

mi∑

j=1

A(h)ij),

where there are n simulation runs and simulated outbreak i has mi days
from onset to peak incidence. Note that sensitivity is computed using only the
outbreak intervals and no distinction is made as to when in the course of an
outbreak alarms occur.

2.4.2 Specificity

Specificity is the probability of no alarm given that there is no outbreak, or

Specificity = P (A|O) =
n(A, O)
n(O)

,

where n(O) is the number of days in the test data and n(A, O) is the number of
alarms when the algorithm is applied to the test data without any superimposed
outbreaks. We calculated specificity at a decision threshold h as:

Sp(h) =
1
m

m∑

j=1

A(h)j ,

where there are m days in the test data set. Note that specificity is calculated
using only non-outbreak data. We therefore assume that any alarm in the test
data without a superimposed outbreak is a false alarm.

2.4.3 Timeliness

Timeliness is the time between the onset of the outbreak and the first alarm
sounded during an outbreak. We calculated timeliness for a single simulated
outbreak as:

T (h) = min
j

(j : A(h)i = 1),

where there are mi days from the onset until the peak of an outbreak i and
timeliness is not defined if

∑mi

j=1 A(h)j = 0. Note that the mean timeliness for
a set of outbreaks is not necessarily monotonically increasing or decreasing with
the threshold. The reason for this potential variation in timeliness is that as the
thresholds changes, new outbreaks may be detected at the changed threshold.
The mean is re-calculated incorporating the timeliness from these additional
outbreaks, but there is no guarantee that the timeliness for these new outbreak
will be less than (or greater than) the mean timeliness before their inclusion.
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The effect of newly incorporated outbreaks is less at lower specificity, where
there are already a considerable number of outbreaks detected. At higher speci-
ficity, though, the derivative of the mean timeliness can change from negative
to positive as the threshold changes.

Timeliness for detection through clinical case-finding in a simulation run was
calculated as the minimum of the times to a positive blood culture diagnosis
for all positive blood cultures ordered for visits occurring in either disease state
which were assigned any syndrome.

2.4.4 Detection Benefit

Detection benefit is the potential gain in time to detection from using a new
detection method relative to a standard or existing method. For a new detection
method A and an existing method B, the benefit of A over B for a single
outbreak is calculated as the difference in the timeliness using the two methods,
or

DAB(h) = max(0, TB(h)− TA(h)).

The detection benefit is always greater than or equal to zero. Note that,
as with timeliness, the mean detection benefit is not necessarily monotonically
increasing or decreasing with the threshold.

Another measure of detection benefit is the proportion of times that method
A detects an outbreak before method B. For a single outbreak, this is equivalent
to calculating a binary measure in place of the continuous detection benefit, or

PAB(h) =
{

0 if DAB(h) = 0
1 if DAB(h) > 0.
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